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Abstract
The negative moments of spectral determinants

〈 ∏
n |1−(E+iδ)/En|−k

〉
diverge

when δ → 0 as δ−ν(k). For a spectrum with equally distributed levels, the
exponent ν(k) = k − 1. For random-matrix ensembles, with parameters β = 1
(orthogonal), 2 (unitary), 4 (symplectic), we argue that the divergences for each
k are determined by competitions between near-degenerate level clusters whose
sizes depend on k, and we conjecture that

ν(k) = int[(k − 1)/β + 1]
(
(k − 1 + 1

2β) − 1
2β int[(k − 1)/β + 1]

)
.

For Poisson-distributed levels, unrestricted clustering leads to the δ-divergence
of the moments increasing with the number N of levels in the interval
considered, and ν(k) = N(k − 1).

PACS numbers: 02.10.Yn, 02.70.Hm, 03.65.-w

The energy levels En of a quantum system are the zeros of its spectral determinant ζ(E) (Voros
(1992)), defined as

ζ(E) ≡
∏
n

f (En)

(
1 − E

En

)
(1)

with f (En) chosen to make the product converge. Therefore the negative moments of ζ(E)—
averages of |ζ(E)|−k over a range of real E including many levels, with k > 0—are infinite if
k > 1. The infinities can be removed by giving E a small imaginary part δ. Then the divergence
of the moments as δ → 0 reflects the nature of the spectrum. In particular, degeneracies or
near-degenerate clusters involving p > 1 levels should powerfully influence the divergence
of the negative moments, because |ζ(E)|−k is large in the vicinity of such clusters. The larger
the value of p, the stronger the divergence, suggesting that large clusters will dominate the
negative moments. On the other hand, large clusters are rare, and this reduces their influence.

Our aim here is to study the competition between these two effects, as embodied in the
leading-order power-law δ-dependence of the moments, for spectra whose fine structure is
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given by the orthogonal, unitary and symplectic ensembles (Gaussian or circular) of random-
matrix theory, and also for the Poisson ensemble of independent random numbers. Such
spectra include the energy levels of classically chaotic and integrable quantum systems, and
the zeros of the Riemann zeta function, regarded as eigenvalues (Berry and Keating (1999)).

For the random-matrix ensembles, we will argue that moments with different k are
dominated by clusters with different sizes p. This is the outcome of a competition between
different p, with victory going to the p-value that for each k generates the largest negative
exponent in the power law. This phenomenon, of moment exponents being determined by
a competition, is familiar (Berry (2000)) as ‘singularity-dominated strong fluctuations’; in
previous examples, the competing elements have been caustics (Berry (1977), Hannay (1982),
Hannay (1983)) or periodic orbits (Berry et al (2000)). For the Poisson ensemble, the lack
of level repulsion leads to exponents that increase with the number of levels in the interval
considered.

We consider the spectral determinant near energy E, scaled so as to have a value of order
unity and with the spectrum locally unfolded in terms of the smoothed spectral density dsm(E)

(that is, the mean scaled level density is unity). Thus we define

ZE(x, δ) ≡ ζ(E + (x + iδ)/dsm(E))

〈|ζ(E)|〉x (2)

where the average is over a range of many levels near E, and study the scaled moments

M(−k, δ) ≡ 〈|ZE(x, δ)|−k〉x. (3)

We will be interested in the behaviour of these negative moments as δ → 0. (The positive
moments M(k, 0)—the δ-regularization is unnecessary here—were calculated by Keating and
Snaith (2000).) Here and hereafter we have dropped the explicit E-dependence, and where
necessary assume that E is in the high-lying part of the spectrum, that is, in the semiclassical
regime.

The regularization involving δ > 0 corresponds to replacing the levels by resonances of
width δ. With the scaling embodied in (2) and (3), δ → 0 means that the widths tend to zero on
the scale of the mean level spacing. We emphasize that this is the regime we are considering
here. Without this scaling, that is without the dsm in (2), small δ would correspond to a different
regime, where the smoothing could be small in comparison with the value of E, or with the
energy range associated with periodic orbits, but still large compared to, or comparable with,
the mean level spacing. Then the details of degeneracies that concern us here are smoothed
away, and the small-δ behaviour of the negative moments is simpler (Hughes et al (2001),
Fyodorov (2001)).

Before proceeding to the main calculations, involving degeneracies, we study the simplest
case of a spectrum without them. This is the one-dimensional harmonic oscillator, where the
levels are equally spaced, and the spectral determinant is

Z(x, δ) = sin(π(x + iδ)). (4)

The moments are

M(−k, δ) ≡
∫ 1/2

−1/2

dx

|sin(π(x + iδ))|k . (5)

For small δ, the dominant contribution to the integral comes from the eigenvalue at x = 0.
This can be approximated by

M(−k, δ) = 1

πk

∫ ∞

−∞

dx

(x2 + δ2)k/2
(1 + o(1)) = Ak

πkδk−1
(1 + o(1)) (6)
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Figure 1. Plot of log M(−4, δ) versus log δ for a spectrum of equally spaced levels, computed
exactly from the integral (5) (thick curve), and from the approximation (6) with the coefficient (7)
(thin curve).

where

Ak =
∫ ∞

−∞

dy

(y2 + 1)k/2
=




π(k − 3)!

2k−3(k/2 − 1)!(k/2 − 2)!
(k even)

2k−2[((k − 3)/2)!]2

(k − 2)!
(k odd).

(7)

In this simple case the small-δ asymptote of a log–log plot of M versus δ should be a straight
line with slope −(k − 1), and figure 1 confirms the accuracy of this prediction (and also of the
prefactor (7)).

Now we turn to the case of principal interest, in which energies are distributed according
to one of the ensembles of random-matrix theory. For the small-δ limit we are considering
(equations (2) and (3)), a rigorous approach is unavailable, so the following arguments are
heuristic.

Consider a cluster of p near-degenerate levels at x1, x2, . . . , xp, with all spacings
|xm − xn| 	 1 for 1 � (m, n) � p. The local behaviour of the scaled spectral determinant (2)
on the real energy axis is

ZE(x, 0) ≈ C(x − x1)(x − x1) · · · (x − xp). (8)

The constant C is of order unity, ensuring that ZE is of order unity away from the cluster, that
is when |x − xm| is of order unity. (Hereafter C will always denote a numerical constant of
order unity.)

The contribution Mp(−k, δ) of p-clusters to the negative moment M(−k, δ) is

Mp(−k, δ) = C

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxp

Pp(x1, . . . , xp)

[(x2
1 + δ2) · · · (x2

p + δ2)]k/2
(9)

where Pp is the probability density for p near-degenerate levels. In writing (9), we have
incorporated the x-independence of the moments. For the random-matrix ensemble with
parameter β (with β = 1, 2 and 4 for the orthogonal, unitary and symplectic ensembles
respectively), the small-spacings behaviour of Pp is the connected product

Pp(x1, . . . , xp) ≈ C

p−1∏
m=1

p∏
n=m+1

|xm − xn|β. (10)

This is obtained by taking the contribution of the cluster in question to the full joint probability
density of the eigenvalues. Use of this local formula is justified because the resulting
integrals (9) (and (11) below) converge for the relevant values of k and p, as we will show later.
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Figure 2. Exponents ν(k) in the dominant power-law divergence (12) of the negative spectral
moments, for the orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4) random-matrix
spectra; inset: �ν(k) = ν(k) − k2/4 for β = 2.

The next step is to scale δ from (9) with the change of variables xm = δum. To implement
this, we note that the number of factors in the product (10) is p(p − 1)/2. Thus

Mp(−k, δ) ≈ Cδp+p(p−1)β/2

δpk

∫ ∞

−∞
du1 · · ·

∫ ∞

−∞
dup

|u1 − u2|β · · · |up−1 − up|β
[(u2

1 + 1) · · · (u2
p + 1)]k/2

. (11)

The exponents in these power-law divergences depend on p. The moment (3) will be dominated
by the cluster with the largest negative exponent. Thus we obtain

M(−k, δ) ∼ C

δν(k)
as δ → 0 (12)

where

ν(k) = max
p

(
p(k − 1 + 1

2β) − 1
2βp2

)
. (13)

The dominating cluster size p(k) is

p(k) = int[(k − 1)/β + 1] (14)

giving the divergence exponent

ν(k) = int[(k − 1)/β + 1]
(
(k − 1 + 1

2β) − 1
2β int[(k − 1)/β + 1]

)
. (15)

This is our main result. The underlying argument is non-rigorous, so we present it as a
conjecture. Rigorous mathematical investigation of it, and even numerical exploration, seem
challenging.

Figure 2 shows the exponents for the three random-matrix ensembles. The formula (15)
holds for any real k � 1, not necessarily integer. For the integers k = 1 + nβ (n integer) the
dominating cluster size switches from p = n to p = n + 1; ν(k) is continuous, with value
βn(n + 1)/2, but the slope of the graph of ν(k) is discontinuous. At these k-values where
p(k) switches, it is possible that the leading-order power-law behaviour (12) is multiplied by
a power of log δ. Halfway between the switching values, that is where k = 1 + (n − 1/2)β,
ν(k) = βn2/2.

For the unitary ensemble (β = 2), ν(k) = (k2 − 1)/4 at odd integers (the switching
values), and ν(k) = k2/4 at even integers. This is close to the exponent k2/4 obtained by a
rigorous argument by Hughes et al (2001) for the case of random matrices of large dimension
N but where the energies are not scaled with N , so the small-δ limit does not probe the details
of the degeneracies. There is no obvious way to adapt the rigorous argument to be sensitive to
the clusters of degeneracies we are studying here.
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When applied to the Riemann zeta function, the large values of negative moments
associated with near-coalescences of zeros on the critical line can be regarded as a magnification
of the Lehmer phenomenon (Edwards (1974)). The β = 2 exponents can be regarded as a
quantification of the phenomenon. Our conjecture (5) agrees with one of Gonek (1989) over
a limited range but not for all k. We incorporate contributions from clusters of zeros, whereas
Gonek’s heuristic argument includes only isolated zeros. (If δ is not allowed to tend to zero,
the exponent is ν(k) = k2/4, in agreement with his conjecture in this case.)

For the above theory to be correct, each integral in (11) must converge for large un, for
the dominating cluster size p(k). The total number of factors in the numerator is p(p − 1)/2,
so the total degree of all these factors is p(p − 1)β/2, and the degree of the individual factors
is (p − 1)β/2. Therefore the integral that must converge is∫ u dun (un)

(p−1)β/2

(un)k
(16)

as u → ∞, requiring

p < 2k/β + 1. (17)

Comparison with (14) shows that this convergence condition is satisfied for all k � 1; further,
it is satisfied not just for the dominant cluster size but for all p for which the exponent
p(k − 1 + β/2) − βp2/2 in (13) is positive.

For Poisson statistics (uncorrelated levels, with β = 0), the situation is different. Naive
application of (15) for β = 0 would give the exponents ν = ∞ for all k: the divergences
in (11) get stronger with increasing p, so there is no dominant cluster size. This suggests
that the negative moments diverge faster than in the cases previously considered, and we now
confirm this by direct calculation. (A similar situation arises for the positive moments; cf. the
β = 0 results in Keating and Snaith (2000).)

Consider N levels x1, . . . , xN randomly and independently distributed on the line
0 � x � N . Corresponding to this is the spectral determinant (equation (2) with E suppressed)

Z(x, 0) = 6N/2

NN

N∏
n=1

(x − xn). (18)

(The normalization—which does not affect the δ-dependence—has been chosen so that the
average 〈Z2(x)〉 = 1.) After incorporating the uniform probability distribution for the
uncorrelated levels, the negative moments can be written as

M(−k, δ) = 6−Nk/2NNk

∫ N

0

dx

N

∫ N

0

dx1

N
· · ·

∫ N

0

dxN

N

1∏N
n=1((x − xn)2 + δ2)k/2

= 6−Nk/2NNk

∫ N

0

dx

N

[ ∫ N

0

dy

N

1

((x − y)2 + δ2)k/2

]N

= 6−Nk/2
∫ 1

0
du

[ ∫ 1

0
dν

1

((u − ν)2 + (δ/N)2)k/2

]N

. (19)

For small δ/N , the limits of the ν-integral can be replaced by ±∞, and then this integral
becomes ∫ ∞

−∞
dν

1

((u − ν)2 + (δ/N)2)k/2
= Ak

(
N

δ

)k−1

(1 + o(1)) (20)

where Ak is given by (7). Thus (19) becomes

M(−k, δ) = (6−k/2AkN
k−1)N

δN(k−1)
(1 + o(1)). (21)
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A more careful analysis confirms that this result survives when corrections to the
approximation (20) are incorporated into the integral in (19), even after this is raised to the
N th power.

The formula (21) has a very strong dependence on the size of the interval N , and in
particular the δ-dependence itself depends on N . We conclude that for a Poisson spectrum the
negative spectral moments have such powerful singularities for real energy that the simple
regularization embodied in δ is inadequate to give finite averages that are local (that is,
independent of N ). This phenomenon is a consequence of the unrestricted clustering permitted
by the lack of level repulsion.
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